Barrier Bucket Studies in the Fermilab Recycler Ring

Chandra Bhat

for MI/RR and Instrumentation Groups,

Beams Division, Fermilab

20th ICFA Advanced Beam Dynamics Workshop
High Intensity High Brightness Hadron Beams
Fermilab
April 8 - 12, 2002

Outline

- Fermilab Recycler Ring (a pbar storage Ring) and its role in Collider Run II
- Barrier Buckets in RR
 - Selection of Wave forms for RR barrier buckets
 - Beam dynamics simulations and RF manipulations in RR
- Beam stacking and unstacking using barrier buckets in RR
- Conclusions and plans

Fermilab Site

Recycler Ring in MI Tunnel

RR Machine Parameters

Table 1.1: Recycler ring parameter list.

Circumference	3319.4 00	ш
Momentum	8.889	GeV/c
Number of Antiprotons	2.5×10^{12}	
March D. P. J.	مومو	
Maximum Beta Function	55	П
Maximum Dispersion Function	2.0	m
Horizontal Phase Advance per Cell	86.8	degrees
Vertical Phase Advance per Cell	79.3	degr ee s
Nominal Horizontal Tune	25.425	
Nominal Vertical Tune	24.415	
Nominal Horizontal Chromaticity	-2	
Nominal Vertical Chromaticity	-2	
Transition Gamma	20.7	
Transverse Admittance	40	π common
Fractional Momentum Aperture	1%	.,
-		
Superperiodicity	2	
Number of Straight Sections	8	
Number of Standard Cells in Straight Sections	18	
Number of Standard Cells in Arcs	54	
Number of Dispersion Suppression Cells	32	
Length of Standard Cells	34.576	ш
Length of Dispersion Suppression Cells	25.933	ш
NI	10011001100	
Number of Gradient Magnets	108/108/128	
Magnetic Length of Gradient Magnets	4.267/4.267/2.845	Ш
Bend Field of Gradient Magnets	1.45/1.45/1.45	kG
Quadrupole Field of Gradient Magnets	3.6/-3.6/7.1	kG/m
Sextupole Field of Gradient Magnets	3.3/-5.9/0	kG/m ²
Number of Lattice Quadrupoles	72	
Magnetic Length of Quadrupoles	0.5	ш
Strength of Quadrupoles	3 0	k G /m

Run II parameters with RR

			With RR]
RUN	Ib (1993-95) (6x6)	Run IIa (36x36)	Run IIa (140x105)	Run IIb (140x105)		
Protons/bunch Antiprotons/bunch*	2.3x10 ¹¹ 5.5x10 ¹⁰	2.7x10 ¹¹ 3.0x10 ¹⁰	2.7x10 ¹¹ 4.0x10 ¹⁰	2.7x10 ¹¹		
Total Antiprotons Poar Production Rate	3.3x10 ¹¹ 6.0x10 ¹⁰	1.1×10^{12} 1.0×10^{11}	$4.2 \times 10^{12} 0.481$ 2.1×10^{11}		1.25E13]
Proton emittance Antiproton emittance	$\frac{23\pi}{13\pi}$	20π 15π	2.1λ10 20π 15π	20π	mmmrad	Required
β* Energy	35 900	35 1000	35	15π 35	cm	Initial Cooled
Antiproton Bunches Bunch length (mrs)	6 0.60	36	1000 103	1000 103	GeV	Beam
Crossing Angle Typical Luminosity	0	0.37	136	0.37 136	m µrad	
Integrated Luminosity [†]	0.16×10^{3} 3.2	0.86x10 ²² 17.3	2.1x10 ² 42	5.2×10°2 105	cm ² sec ⁻¹ pb ⁻¹ /week	
Bunch Spacing Interactions/crossing	~3500 2.5	396 23	132 1.9	132 4.8	nsec	

Why do we have to use barrier buckets in RR?

• RR is an 8 GeV pbar storage ring. At any given time, the RR requires to have up to three different regions

- Cooled beam ~54 eVs,
- Hot beam ~108 eVs
- Transferred beam ~10 –16 eVs
- Each one of them serve specific functions. These specifications demand use of barrier buckets.

Choice of RR Barrier Buckets

The RR runs below transition energy. Therefore the wave shapes have to flip.

Properties of Barrier Bucket

Bucket area:

$$\mathcal{A} = 2T_2\Delta E + \frac{8\pi|\eta|}{3\omega_0\beta^2 E_0 eV_0}(\Delta E)^3.$$

Bucket half height:

$$\Delta E_{\mathrm{b}} = \left(rac{eV_0T_1}{T_0}rac{2eta^2E_0}{|\eta|}
ight)^{1/2}$$

- η is phase slip factor,
- E_o is synchronous energy,
- $\omega_0 = 2\pi f_{rev}$ with $f_{rev} =$ beam circulation frequency.

Barrier Bucket

RF Manipulations in RR using Barrier Buckets for Stacking

Computer Simulation of Beam Stacking in RR

eliminating 2.5 MHz elowly (with Jim Maclachlan) squeeze borrier elowly turn of acceptance and the state of t

Squesza barrier slowly JPN 201445 2005E+60 sea

second transfer. eliminating 2.5 MHz slowly man seems escote-es we

Longitudinal Beam dynamics simulations: How fast can one squeeze?

• Initial beam conditions:

$$-Es = 8 \text{ GeV}$$

$$-\varepsilon_l = 12 \text{ eVs}$$

T(Squeeze)	Δε/ε
2.0	5%
1.4	5%
0.8	8%
0.6	13%
0.4	21%
0.2	71%

Wideband RF cavity of RR

• This is a broad band RF system operating in the Frequency range of 10kHz to 100MHz

Schematic drawing of Recycles Wideband RF Cavity

- This consists of four ferrite loaded cavity each driven by 3.5KW solid state amplifier and capable of providing a gap voltage of 500V with total maximum voltage of 2kV.
- Joe Dey and Dave Wildman PAC99, 869

Test of RR RF cavity

RF cavity on the test stand

Output signal from one of the four RR RF cavity gap monitor. This data is taken without beam

RR: Barrier Bucket Configurations for beam stacking

- 2.5 MHz buckets opened for bucket to bucket transfer from MI to RR

- Adiabatic debunching of 2.5 MHz buckets in RR

- Completely debunched state

RR: Barrier Bucket Configurations for beam stacking (cont.)

- After squeezing the transfer bucket
- After merging the transfer beam into stacked beam
- Before opening the next transfer bucket

- Ready for next transfer

Pbar Stacking in RR

- Beam in the 2.5 MHz buckets and in stacking bucket

 Debunched beam in stacking bucket

- Squeezed beam in stacking bucket

Pbar Stacking in RR (cont.)

Beam just before merging

After merging

Ready for next transfer

Proton Stacking

We have demonstrated

- Stacking of protons ~ 750E10
- Stacking of pbars ~ 30E10
- Successful extraction of protons from a stack and transfer to the Main Injector

Beam in Transfer and Stacking Barrier Buckets

 Injected beam in barrier buckets and debunching

• Injection to stacking

Experiment to eliminate the asymmetry in the beam distribution in RR barrier buckets

• Slanted distribution because of barrier pulse of different area

Corrected distribution

Conclusions and Plans

- Beam handling in the Fermilab Recycler Ring using barrier buckets will be an integral part of the RR operation.
- We have successfully transferred proton and antiproton beams from MI to RR and back using barrier buckets and have stacked beam in RR barrier buckets.
- Accurate measurement of longitudinal emittance is important to understand the beam dynamics in RR. Some initial efforts have been made.
- Presently we use Schottky detectors to measure the emittance of coasting beam.
 We plan to extend this technique for beam in barrier buckets by properly gating.
- There are many challenges to be met